On oscillatory convection with the Cattaneo-Christov hyperbolic heat-flow model.
نویسنده
چکیده
Adoption of the hyperbolic Cattaneo-Christov heat-flow model in place of the more usual parabolic Fourier law is shown to raise the possibility of oscillatory convection in the classic Bénard problem of a Boussinesq fluid heated from below. By comparing the critical Rayleigh numbers for stationary and oscillatory convection, Rc and RS respectively, oscillatory convection is found to represent the preferred form of instability whenever the Cattaneo number C exceeds a threshold value CT≥8/27π2≈0.03. In the case of free boundaries, analytical approaches permit direct treatment of the role played by the Prandtl number [Formula: see text], which-in contrast to the classical stationary scenario-can impact on oscillatory modes significantly owing to the non-zero frequency of convection. Numerical investigation indicates that the behaviour found analytically for free boundaries applies in a qualitatively similar fashion for fixed boundaries, while the threshold Cattaneo number CT is computed as a function of [Formula: see text] for both boundary regimes.
منابع مشابه
Exploration of the Significance of Autocatalytic Chemical Reaction and Cattaneo-Christov Heat Flux on the Dynamics of a Micropolar Fluid
During the homogeneous-heterogeneous autocatalytic chemical reaction in the dynamics of micropolar fluid, relaxation of heat transfer is inevitable; hence Cattaneo-Christov heat flux model is investigated in this report. In this study, radiative heat flux through an optically thick medium is treated as nonlinear due to the fact that thermal radiation at low heat energy is distinctly different f...
متن کاملDarcy-Forchheimer flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions
Here Darcy-Forchheimer flow of viscoelastic fluids has been analyzed in the presence of Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. Results for two viscoelastic fluids are obtained and compared. A linear stretching surface has been used to generate the flow. Flow in porous media is characterized by considering the Darcy-Forchheimer model. Modified version of Fourier's l...
متن کاملUnsteady free convection oscillatory couette flow through a variable porous medium with concentration profile
In this paper we have studied the effect of free convection on the heat transfer and flow through variable porous medium which is bounded by two vertical parallel porous plates. In this study it is assume that free stream velocity oscillates with time about a constant mean. Periodic temperature is considered in the moving plate. Effect of different parameters on mean flow velocity, Transient ve...
متن کاملA Comparative Study for Flow of Viscoelastic Fluids with Cattaneo-Christov Heat Flux
This article examines the impact of Cattaneo-Christov heat flux in flows of viscoelastic fluids. Flow is generated by a linear stretching sheet. Influence of thermal relaxation time in the considered heat flux is seen. Mathematical formulation is presented for the boundary layer approach. Suitable transformations lead to a nonlinear differential system. Convergent series solutions of velocity a...
متن کاملCattaneo-Christov Heat Flux Model for MHD Three-Dimensional Flow of Maxwell Fluid over a Stretching Sheet
This letter investigates the MHD three-dimensional flow of upper-convected Maxwell (UCM) fluid over a bi-directional stretching surface by considering the Cattaneo-Christov heat flux model. This model has tendency to capture the characteristics of thermal relaxation time. The governing partial differential equations even after employing the boundary layer approximations are non linear. Accurate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Mathematical, physical, and engineering sciences
دوره 471 2175 شماره
صفحات -
تاریخ انتشار 2015